# Causal Inference with Observational Data

 $\bullet \bullet \bullet$ 

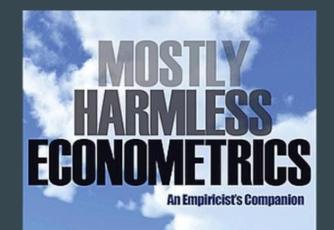
Dean and Friends Dropkick, Monica, Zhe, and Jackie

# Topics

- Why Natural Experiments
- Difference in Difference Z
- Instrumental Variables M
- Survival Models M
- Propensity Score Matching J
- Tobit Models D
- Heckman Models D

### **General Motivation**

- Interventions: policy / management / new product
- Behavior-centric data
  - $\circ$   $\$  many, many unobserved features
- Central to all causal statements:
  (a) identification/counterfactual strategy
  (b) assumptions defending identification
  - $\circ$  many, many subtleties

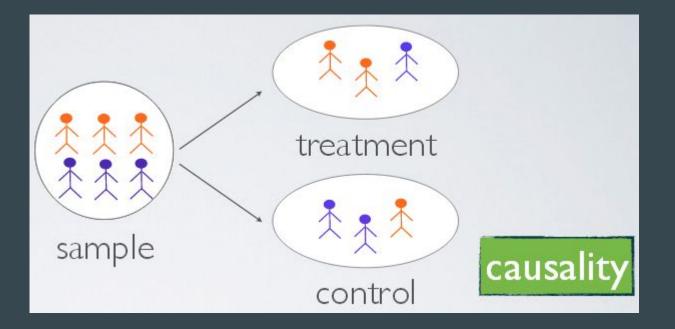


### **Ideally: Counterfactuals**

Counterfactuals: "we only observe what actually happens"

- Naive estimate of program effect: E[Program] - E[None]
- With observed data:
  E[ Program|D = 1 ] E[ None|D = 0 ]
- "[D=1], [D=0]"
  - random? Probably not; related to unobservables

### Simplest Approach



### Next Simplest: Assume No Unobservables

Regression with controls

e.g. Effect of a job training program
 Basic demographics, income, education

Machine Learning

- maximizes predictive fit
- estimate of effect the same:
  E[ Program|D = 1 ] E[ None|D = 0 ]

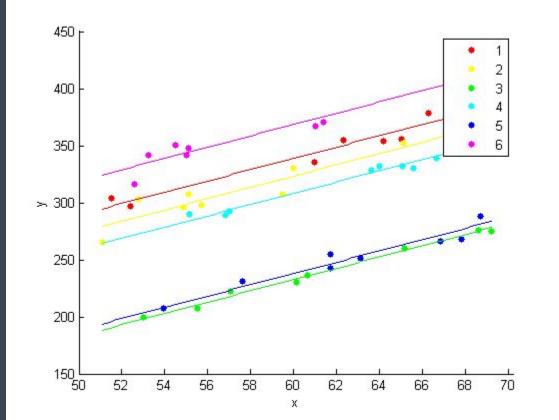
### **After That: Natural & Quasi-Experiments**

Natural Separation of Groups

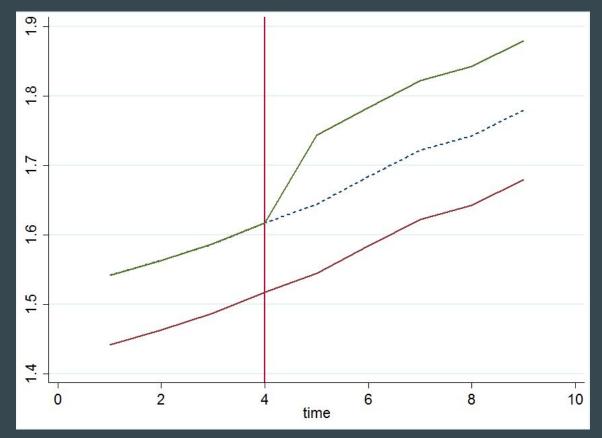
US Military Draft on Random Social Security Numbers odd/even?

 $\rightarrow$  estimate effect of military on career outcomes

### **Fixed Effects & Differences-in-Differences**



### Fixed Effects & Differences-in-Differences



### **Fixed Effects & Differences-in-Differences**

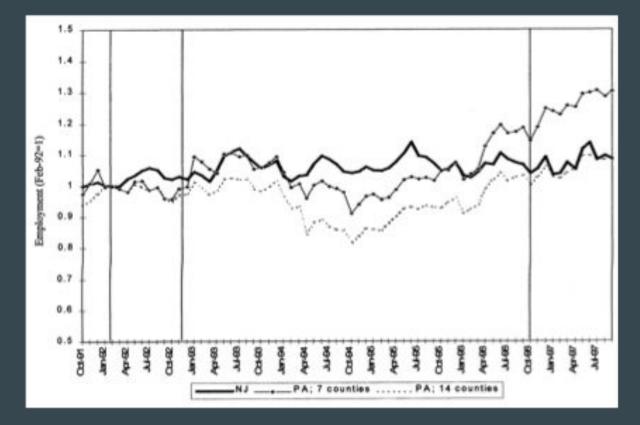
Not usually that simple.

Examples:

Effect of minimum-wage increase in NJ (uses eastern PA as counterfactual)

Effect of Uber/Lyft on drunk driving homicides (uses time-based diff-in-diff)

### Main Task: Defending Identification Strategy

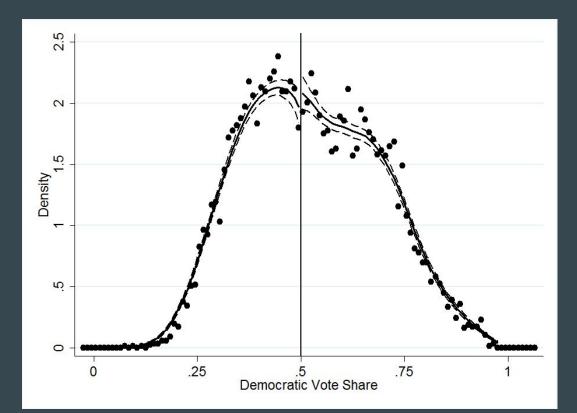


### **Discontinuity/Threshold Design**

Scholarship Effect Vote Effect

Class Size Effect

Flaw: *local* estimate



### **Instrumental Variables**

- Want to look at the effect of treatment on outcome
  - Controlled experiments often not viable in social sciences
  - Usually working with observational data
- Potential issue with classical regression: endogeneity (explanatory variables correlated with error term)
- To try and avoid this, use an instrument for treatment explanatory variable of interest.
- An instrument must be:
  - Correlated with explanatory variable of interest
  - Uncorrelated with error term

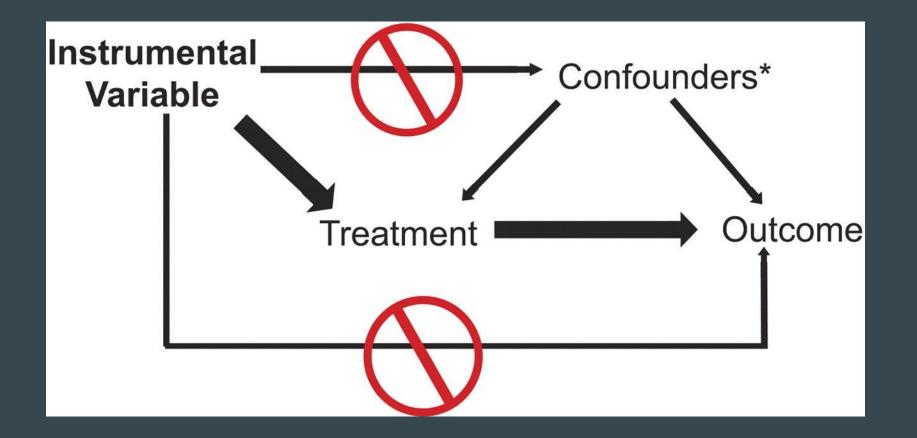
### **Instrumental Variables**

 $y = X\beta + \varepsilon$ 

- Replace X with predicted values of X that are
  - Related to actual X
  - Uncorrelated with E
- Estimation: most commonly 2SLS

X = ZV + u $\rightarrow y = X\beta + \varepsilon$ 

- Where to find instruments: policy reforms, geographic differences
- Problems with IV: exclusion restriction untestable, weak instruments cause problems



## **Survival Models**

- What is it?
  - Analysis of waiting times until an event occurs
  - Usually used when event only occurs once
  - E.g. time until death, first marriage, first birth, first divorce...
  - (multiple occurrences: see event history analysis)
- Stuff we are interested in estimating
  - Survival function S(t)
    - Probability that time of event T is greater than t
    - $S(t) = P(T \ge t) = 1 F(t)$
  - Hazard function h(t)
    - Instantaneous death/failure rate
    - (-) slope of the log of S(t)

## **Survival Models**

General form:

 $log(h(t)) = log(h(0)) + X\beta$  $h(t) = h(0)exp(X\beta)$ 

How to estimate S(t) / h(t):

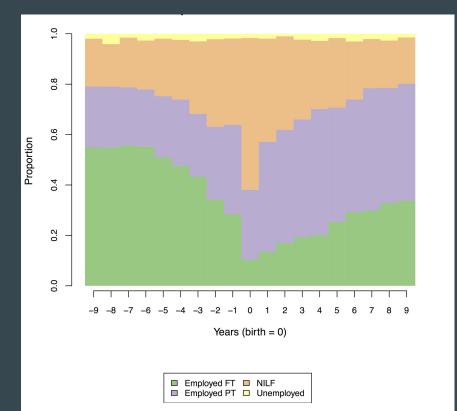
- Non-parametric (Kaplein-Meier)
- Semi- parametric (Cox proportional hazards)
- Parametric (Poisson regression)

Censoring: often observations are censored i.e. T> t(observation)

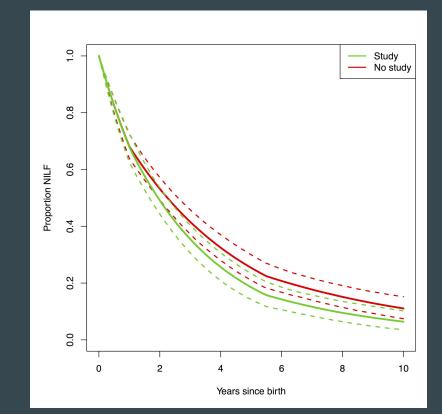
- Can still use to get info about population exposure, but not occurences

### Mothers returning to study

Work patterns before and after birth



#### Proportion not in labor force by study group



### What if the treatment and control groups look very different?



Receives training



What we observe

- The average outcome of the treated individuals *conditional on them receiving* the treatment or intervention
- The average outcome of the untreated individuals *conditional on them not receiving* the treatment or intervention

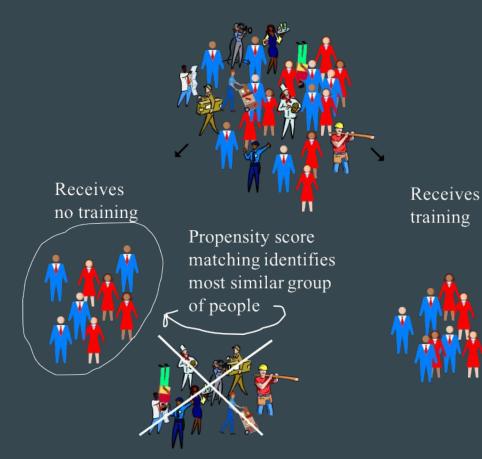
These are not directly comparable!

#### What we want

• The *average difference in potential outcomes* for each individual if they did versus did not receive treatment

Slide credit: Jennifer Hill

### If we think we know how these groups differ, we can match them



- This requires assuming *ignorability*: that we have measured all the covariates that we need to predict how likely an individual is to receive the treatment
- Build a classifier on the likelihood of receiving treatment
  - *Match* individuals from the treatment to similar individuals in the control group
  - "One-number summary"
- We never really believe we have measured all the relevant covariates!

Slide credit: Jennifer Hill

### Better than doing nothing, worse than a field test

| matched |        |       |       |     |     |    |     | linear |        |
|---------|--------|-------|-------|-----|-----|----|-----|--------|--------|
| to      | Person | Treat | Educ. | Age | Y0  | Y1 | Y   | score  | pscore |
| 11      | 1      | 1     | 1     | 26  | 10  | 14 | 14  | 0.77   | 0.68   |
| 12      | 2      | 1     | 1     | 21  | 8   | 12 | 12  | 0.60   | 0.65   |
| 11      | 3      | 1     | 1     | 30  | 12  | 16 | 16  | 0.91   | 0.71   |
| 12      | 4      | 1     | 1     | 19  | 8   | 12 | 12  | 0.53   | 0.63   |
| 8       | 5      | 1     | 0     | 25  | 6   | 10 | 10  | -0.71  | 0.33   |
| 7       | 6      | 1     | 0     | 22  | 4   | 8  | 8   | -1.14  | 0.24   |
|         | 7      | 0     | 0     | 21  | 4   | 8  | 4   | -1.29  | 0.22   |
|         | 8      | 0     | 0     | 26  | 6   | 10 | 6   | -0.56  | 0.36   |
|         | 9      | 0     | 0     | 28  | 8   | 12 | -8- | -0.27  | 0.43   |
|         | 10     | 0     | 0     | _20 | _ 4 | 8  | 4   | -1.43  | 0.19   |
|         | 11     | 0     | 1     | 26  | 10  | 14 | 10  | 0.77   | 0.68   |
|         | 12     | 0     | 1     | 21  | 8   | 12 | 8   | 0.60   | 0.65   |
|         | 13     | 0     | 0     | 16  | 2   | 6  | 2   | -2.01  | 0.12   |
|         | 14     | 0     | 0     | 15  | 1   | 5  | 1   | -2.15  | 0.10   |
| -0-00-  |        |       |       |     | 0   |    |     |        |        |



- Makes fewer (parametric) assumptions than controlling for the covariates in a standard regression
- Needs at least some overlap between the treatment and control groups or matching will fail (But at least you will know that it failed!)
  - Can try many different model specifications to predict propensity of receiving treatment--use the one that gives you the most balance
- Great for inverse probability of treatment weighting!

Slide credit: Jennifer Hill

### **Tobit Models (Corner solution models)**

### • When do you use them?

- When your response or 'y' variable is zero for a nontrivial fraction of the population but is roughly continuously distributed over positive values.
- An example is the amount an individual spends on alcohol in a given month
- Why does a linear regression not work?
  - Negative values
  - Bunching around zero conditional distribution not normal
  - The x's don't really have a constant marginal effect on y

### **Tobit Models**

$$y^* = eta_0 + \mathbf{x}eta + u, \quad u | \mathbf{x} \sim \text{Normal}(0, \sigma^2)$$
  
 $y = \max(0, y^*).$ 

### **Tobit Models - Interpretation**

- It's really hard!
- We care about two things in particular
  - E(y|y > 0,x) for the subpopulation which is positive
  - E(y|x) for the entire population
- We then take the partial derivatives

 $E(y|y > 0, \mathbf{x}) = \mathbf{x}\boldsymbol{\beta} + E(u|u > -\mathbf{x}\boldsymbol{\beta})$  $= \mathbf{x}\boldsymbol{\beta} + \sigma E[(u/\sigma|u/\sigma > -\mathbf{x}\boldsymbol{\beta}/\sigma)]$  $= \mathbf{x}\boldsymbol{\beta} + \sigma \phi(\mathbf{x}\boldsymbol{\beta}/\sigma)/\Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)$  $= \mathbf{x}\boldsymbol{\beta} + \sigma \lambda(\mathbf{x}\boldsymbol{\beta}/\sigma)$ 

$$\begin{split} \mathsf{E}(y|\mathbf{x}) &= \mathsf{P}(y > 0|\mathbf{x})\mathsf{E}(y|y > 0, \mathbf{x}) \\ &= \Phi(\mathbf{x}\boldsymbol{\beta}/\sigma)\mathsf{E}(y|y > 0, \mathbf{x}). \end{split}$$

 $\mathsf{E}(y|y>0,\mathbf{x})=\mathbf{x}\boldsymbol{\beta}+\sigma\lambda(\mathbf{x}\boldsymbol{\beta}/\sigma),$ 

### **Tobit Models - Examples**

- 753 women in sample annual hours worked
  - 428 worked for a wage
  - 325 stayed at home and worked 0 hours
- Amount spent on healthcare annually
  - Some (very healthy) people do not visit hospitals or doctors in certain years
- Amount of alcohol consumed monthly

### **Heckman Models**

### • Deals with truncated data (incidental truncation)

- We restrict attention to a subset of the population before sampling
- The 'omitted variable' in this case is how people were selected into the sample
- $\circ$  ~ Ie: It is NOT a random sample
- Assume that the underlying population satisfies some linear regression model
- Example: wage of married women

$$y = \beta_0 + \mathbf{x}\boldsymbol{\beta} + \boldsymbol{u}, \quad \boldsymbol{u} | \mathbf{x} \sim \text{Normal}(0, \sigma^2).$$

## The Two stages

- 1st Stage:
  - Estimate probability of being included in sample (logistic/probit)
  - For wages of working women.... Education?
  - Must include a variable that causes selection in sample but does not explain your 'y'
  - Compute what is called the 'inverse Mills ratio' for each observation
- 2nd Stage:
  - Estimate the regression you would have run but add the 'inverse Mills ratio' as a predictor in the model
  - If the coefficient on this 'inverse mills ratio' is 0 then you 'can' say that there is no sample selection bias and can use a standard linear regression.

### **Questions?**