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Motivating example

Motivating example: want to measure the effect of mental
health services on future jail bookings (some notation)

I Yi (t): potential outcome for observation i under treatment t
I Ti : binary indicator for treatment status for observation i

I t ∈ {0, 1}, 0 = control, 1 = treatment

I In this example...

I Yi =

{
0 if person i not booked in jail

1 if person i booked in jail

I Ti =

{
0 if person i doesn’t receive tx from social worker

1 if person i receives tx from social worker

I X : observed covariate correlated with T and Y

I U: unobserved covariate correlated with T and Y

I Note: we know this is not what the JoCo team is working on! But
just wanted to include a relevant example
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Motivating example

Ideal Setting for Estimating Causal Effect

Randomized Controlled Trial (RCT )

I Can we randomize people to receive mental health treatment?

If so, can estimate the average treatment effect (ATE):

E [Y (1)− Y (0)]

If not, we must try to use non-experimental data to estimate the ATE.
But, one big challenge...

Confounding
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Motivating example

The problem of confounding when measuring the effect of
T on Y

T: MH tx

MH history, education,
race, trust in MH providers

Y: Future incarceration
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Motivating example

Where Aniket and Ancil left off: two classes of confounders

T: MH tx

X: MH history, educ., race

Y: Future
incarc.

T: MH tx

U: trust in MH providers

Y: Future
incarc.

I Unobserved confounders: e.g., trust in MH providers; some latent
measure of severe mental health issues not captured in the observed
mental health history

I Observed confounders: race, sex, etc.
I The strategies we’ll cover today help make an assumption–that

treatment units’ potential outcomes are similar to control units once
we condition on the correct set of observed confounders (but may still
vary substantially along unobserved dimensions)– more plausible

I Sensitivity analyses exist showing how results change with different
magnitudes of unobserved confounding

I E.g.: Bounding (Rosenbaum, 2002); confounding-adjusted outcomes
(Blackwell, 2014); E-value (VanderWeele and Ding, 2017)
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Motivating example

Comparing MH tx and control: What if randomly assigned?

MH tx Controls

Age (mean) 30
% Male 67.2
% Black 53
% High School Educated or more 45
Num. of co-occurring conditions (median) 5

N 137
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Motivating example

Comparing MH tx and control: In reality

MH tx Controls

Age (mean) 30 45
% Male 67.2 39.9
% Black 53 40
% High School Educated or more 45 44
Num. of co-occurring conditions (median) 5 1

N 137 393
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Motivating example

Traditional non-experimental design options

I Stratification
I Put people into groups with same values of covariates (e.g., analyze

individuals in poverty and not in poverty separately)
I But lots of variables to stratify on, limited sample size
I Hard to adjust for many covariates this way

I Regression analysis
I e.g., normal linear regression of outcome given treatment and covariates
I Predict incarceration given covariates and mental health services use;

look at coefficient on mental health services
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Motivating example

Dangers of regression adjustment on full samples

I When the treated and control groups have very different distributions
of the confounders, can lead to bias if model misspecified

I Observe Y (0) in the control group, Y (1) in the treatment group
I Predicting Y (0) for the treatment group may involve extrapolation and

pure reliance on functional form

I Regression is only ”trustworthÿıf the treatment and comparison
groups look similar on covariates (Rubin, 2001; Ho et al., 2007)
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Motivating example

Visualizing Extrapolation

10 / 34



Motivating example

So can we never use regression adjustment?

I No, not at all!
I If differences between groups not large (e.g., < .1 or .2 standard

deviations) regression works fine (Rubin, 2001)
I And in fact, matching methods (like propensity scores) work best in

conjunction with regression
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Motivating example

So what should we do instead?

Some methods attempt to remove both forms of confounding:
I Regression discontinuity

I Org has limited MH providers. Do they score people and only offer treatment to
those who score above some threshold? If so, assume people around threshold are
similar on both observed and unobserved

I Instrumental variables
I Amount of rainfall meaningfully predicts whether people receive mental health

treatment (no weak instrument) and is uncorrelated with their likelihood of future
incarceration (exclusion restriction)

When those don’t work for a question, make assumption covered on the next
slides2 and use matching/weighting to make assumption more plausible. Cover
two methods:

1. Propensity Scores

2. Alternative methods (CEM)

2Goes by different names: selection on observables (SOO); no unobserved confounders;
strong ignorability
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Motivating example

So what should we do instead?

I Matching/Weighting
1. Propensity Scores
2. Alternative methods (CEM)
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Method #1: propensity scores

Propensity Score Methods

I Propensity score methods attempt to replicate two features of
randomized experiments

I Create groups that look only randomly different from one another (at
least on observed variables)

I Don’t use outcome when setting up the design

I Idea is to find treated and control individuals with similar covariate
values

I Increase “balance”
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Method #1: propensity scores

Propensity scores

I Probability of receiving the treatment (T ), given the covariates (X )

ei = P(Ti = 1|Xi )

I Two key features:

1. Balancing score: At each value of the propensity score, the distribution
of observed covariates (that went into the propensity score) the same
in the treated and control groups

2. If treatment assignment independent of potential outcomes given
covariates, then also independent of potential outcomes given the
propensity score (no unmeasured confounders)

I Facilitate matching because can match just on propensity score,
rather than all of the covariates individually

I Can estimate propensity scores using a simple logistic regression
model
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Method #1: propensity scores

Feature 1: Propensity scores as balancing scores

I At each value of the propensity score, the distribution of observed
covariates (that went into the propensity score) the same in the
treated and control groups

I Intuitively, if two people had the same probability of receiving the
treatment (e.g., mental health services) and one did and one didn’t, it
must have been random as to who did and who didn’t

I Within small range of propensity score values, treated and comparison
individuals should look only randomly different on the observed
covariates

I Difference in outcomes within groups with same/similar propensity
scores gives unbiased estimate of treatment effect
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Method #1: propensity scores

Feature 2: Unconfoundedness

I If unconfoundedness holds given the full set of observed covariates,
also holds given the propensity score

I P(T |X ,Y (0),Y (1)) = P(T |X ) implies
P(T |X ,Y (0),Y (1)) = P(T |e(X ))

I This is what allows us to match just on propensity score; don’t need
to deal with all the covariates individually
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Method #1: propensity scores

Common support/overlap

I Additional requirement for causal inference: ’common support’
I Everyone has a positive probability of receiving any of the conditions

I Known as ’positivity’ in epidemiology
I Part of ’strong ignorability’ in statistical literature

I Fundamentally, if someone has 0 probability of receiving one of the
treatments, we have no way of learning what their outcomes would be
under that treatment, so can’t learn about their causal effects

I In practice this examined by looking at the common support/overlap
of the propensity score distribution: do the groups overlap (e.g.,
histograms)
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Method #1: propensity scores

Using propensity scores/types of “matching”

I k to 1 nearest neighbor matching
I For each treated unit, select k controls with closest propensity scores
I Will discussion variations on this later

I Subclassification/stratification
I Group individuals into groups with similar propensity score values
I Often 5 subclasses used (Cochran 1968)

I Weighting adjustments
I Inverse probability of exposure weights (IPTW)
I Weighting by the odds
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Method #1: propensity scores

So what should we do instead?

I Matching/Weighting
1. Propensity Scores
2. Alternative methods (CEM)

20 / 34



Method #2: alternative approaches

Returning to the rationale behind propensity scores:
difficult to perform exact matching of treatment units with
controls with continuous covariates / as k increases

T age sex race income(k) yrseduc . . . k

1 27 M W 10.5 12 . . .

1 24.5 M W 30 10 . . .

...

1 21 F B 60 16 . . .





T = 1; k predictors

T age sex race income(k) yrseduc . . . k

0 21 M W 25.5 16 . . .

0 23 M B 60 14 . . .

...

0 28 F H 42 20 . . .





T = 0; k predictors
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Method #2: alternative approaches

Propensity score approach: address inability to exact
match by compressing k into a single scalar and then use
that scalar to reweight data

T age yrseduc . . . k weight(w)

1 27 12 . . . 1

1 24.5 10 . . . 1

...

1 21 16 . . . 1

0 21 16 . . . 1

0 23 14 . . . 1

...

0 28 20 . . . 1





π(X ) =
Pr(T = 1|X )

T π̂ w(IPT )

1 0.8 1
0.8 = 1.25

1 0.2 1
0.2 = 5

...

1 0.4 1
0.4 = 2.5

0 0.4 1
(1−0.4) = 1.666

0 0.6 1
(1=0.6) = 2.5

...

0 0.1 1
(1−0.1) = 1.111
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Method #2: alternative approaches

Two classes of extensions

1. Use methods other than logistic regression to estimate π(X ) =
Pr(T = 1|X )

I Why? Often optimize logit to find β̂MLE (vector of weights on
coefficients that maximize the likelihood function); in reality, we care
less about weights on X that highly predict treatment and more about
weights that optimize balance between treatment and control on X

I How: covariate-balancing propensity scores (CBPS; Imai and Ratkovic,
2014)

2. Return to original goal–exact matching of each treatment unit with a
control unit–and perform that matching based on original covariate values
(X ) rather than a compression of those covariate values into π(X )

I Why? simulations show (King and Nielsen, 2016):
I When PSM is most likely to reduce imbalance: larger divergence

between π(T = 1) and π(T = 0); PSM useful but common
support condition most likely to be violated

I When PSM increases imbalance: as π(T = 1) = π(T = 0)→ 0.5,
PSM least useful due to random pruning but common support
condition most likely to be met

I How? CEM (Iacus, King, and Porro, 2011) 23 / 34



Method #2: alternative approaches

Coarsened exact matching (CEM): stick with original
covariates rather than π; get as close as possible to exact
matching in two ways

T age sex race income(k) yrseduc . . . k

1 27 M W 10.5 12 . . .

1 24.5 M W 30 10 . . .

...

0 21 M W 25.5 16 . . .

0 23 M B 60 14 . . .

...
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Method #2: alternative approaches

Match treatment and control units exactly on nominal k

T age sex race income(k) yrseduc . . . k

1 27 M W 10.5 12 . . .

1 24.5 M W 30 10 . . .

...

0 21 M W 25.5 16 . . .

0 23 M B 60 14 . . .

...




25 / 34



Method #2: alternative approaches

Coarsen continuous k and perform exact matching within
strata

T age sex race income(k) yrseduc . . . k

1 27 M W 10.5 12 . . .

1 24.5 M W 30 10 . . .

...

0 21 M W 25.5 16 . . .

0 23 M B 60 14 . . .

...
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Method #2: alternative approaches

Visual illustration. Start with un-coarsened continuous
values...

Education

Age

12 14 16 18 20 22 24 26 28

20

30

40

50

60

70

80

CCC C
CC CC

C CC C CCC CCCC
CCC CC CCC CCCCCC

C C
CC CC C

T T
T T

TT TT T TT
TTT TT

T
TTT
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Method #2: alternative approaches

Coarsen based on meaningful categories and construct
strata

Education

HS BA MA PhD 2nd PhD

Drinking age

Don't trust anyone
over 30

The Big 40

Senior Discounts

Retirement

Old

CCC C
CC CC

C CC C CCC CCCC
CCC CC CCC CCCCCC

C C
CC CC C

T T
T T

TT TT T TT
TTT TT

T
TTT
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Method #2: alternative approaches

Drop all units in strata where matching can’t occur and
match/reweight (note that if tx units are dropped, leads to
new estimand)

Education

HS BA MA PhD 2nd PhD

Drinking age

Don't trust anyone
over 30

The Big 40

Senior Discounts

Retirement

Old

C
C C

CC
CC C CC

C CC CCCC

C

TT
T T TT

TTT TT

T
TTT
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Method #2: alternative approaches

Matching: implementation

I MatchIt: can specify distance
metric to calculate (e.g.,
distance between π;
mahalanobis distance on raw
covar values); method to
match on (e.g., nearest
neighbor); how many control
units to match with each
treatment (e.g., 1:1, 2:1)

I CEM

I WeightIt

I Cobalt

I causalinference: less
familiar but seems to have
propensity score

I Or...estimate prop score using
preferred method and write
own matching function (written
in R but could translate)
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Matching and ML

Matching and DSSG projects

I Three general quantities of interest with our motivating example

1. β̂: estimate effect of mental health treatment (T = 1) on jail
(re-)booking

2. ŷ : predict jail (re-)booking
3. Some combination, e.g.: τ̂ = Ŷ (T = 1)− Ŷ (T = 0)

I Goal of DSSG projects is often #2; most work on matching + ML
focuses on potential of latter for goal #1
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Matching and ML

How ML can help with matching if we care about β̂

I Estimating π(X ) = Pr(T = 1|X )
I Properties reviewed earlier depend on conditioning on the ’correct’ set

of confounders. E.g., X but not Z (Bhattacharya and Vogt, 2007;
Pearl, 2010)

T: MH tx

X: MH history, educ., raceZ: instrument for T

Y: Future
incarc.

I Some evidence that using ML methods like random forest makes the
estimation of π(X ) more robust to accidental inclusion of Z

I Inadvertant byproduct of introducing ML methods to predict a unit’s
treatment status is that the same mark of a ’good’ ML model–units
where observed Ti = 1 have high π̂i ; observed Ti = 0 have low
π̂i–makes the ’common support’/overlap assumption
(0 < P(Ti = 1|Xi ) < 1) more difficult to defend

I As assumption, it’s untestable; in practice, people look at overlap in
empirical distributions of π̂i
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Matching and ML

How matching can help ML if we care about ŷ

I Many of our training (and test) sets are neither a full census nor a
random sample of units (people; building; workplaces)

I Problematic if T or Y is correlated with a unit’s probability of being
in the sample (collider bias)

X: any feature

S: included in sample
(e.g., only people w/
at least one booking +
some MH history)

Y: Future
incarc.

I Think of S as the thing to match on and model that process
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Matching and ML

Conclusion

I Other strategies for causal inference are aimed at addressing both
observed features of a unit that influence its likelihood of treatment
and unobserved features

I Matching makes a strong assumption–that once we condition on the
correct set of observed features, the potential outcomes of a unit are
independent from its treatment status. But it allows us to work with
a broader range of observational data

I Once we decide whether ’to match’, there are many choices about
how to match with non-trivial implications for parameter estimates
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