Causal inference with observational data: matching and weighting methods

Ben Ackerman and Rebecca Johnson¹

July 30, 2018

 1 Acknowledgments to Elizabeth Stuart, Brandon Stewart, and others for sharing slides

Motivating example: want to measure the effect of mental health services on future jail bookings (some notation)

- \blacktriangleright $Y_i(t)$: potential outcome for observation *i* under treatment *t*
- \blacktriangleright T_i : binary indicator for treatment status for observation i
	- \blacktriangleright $t \in \{0, 1\}$, $0 =$ control, $1 =$ treatment
- \blacktriangleright In this example...
	- \blacktriangleright $Y_i =$ \int 0 if person *i* not booked in jail 1 if person i booked in jail \blacktriangleright $T_i =$ $\int 0$ if person *i* doesn't receive tx from social worker 1 if person *i* receives tx from social worker
- \triangleright X: observed covariate correlated with T and Y
- U: unobserved covariate correlated with T and Y
- \triangleright Note: we know this is not what the JoCo team is working on! But just wanted to include a relevant example

Ideal Setting for Estimating Causal Effect

Randomized Controlled Trial (RCT)

 \triangleright Can we randomize people to receive mental health treatment? If so, can estimate the average treatment effect (ATE):

 $E[Y(1) - Y(0)]$

If not, we must try to use *non-experimental data* to estimate the ATE. But, one big challenge...

Confounding

The problem of confounding when measuring the effect of T on Y

Where Aniket and Ancil left off: two classes of confounders

- \triangleright Unobserved confounders: e.g., trust in MH providers; some latent measure of severe mental health issues not captured in the observed mental health history
- \triangleright Observed confounders: race, sex, etc.
- \triangleright The strategies we'll cover today help make an assumption–that treatment units' potential outcomes are similar to control units once we condition on the correct set of observed confounders (but may still vary substantially along unobserved dimensions)– more plausible
	- \triangleright Sensitivity analyses exist showing how results change with different magnitudes of unobserved confounding
		- \blacktriangleright E.g.: Bounding (Rosenbaum, 2002); confounding-adjusted outcomes (Blackwell, 2014); E-value (VanderWeele and Ding, 2017)

Comparing MH tx and control: What if randomly assigned?

Comparing MH tx and control: In reality

Traditional non-experimental design options

\blacktriangleright Stratification

- \triangleright Put people into groups with same values of covariates (e.g., analyze individuals in poverty and not in poverty separately)
- \triangleright But lots of variables to stratify on, limited sample size
- \blacktriangleright Hard to adjust for many covariates this way
- \triangleright Regression analysis
	- \triangleright e.g., normal linear regression of outcome given treatment and covariates
	- \triangleright Predict incarceration given covariates and mental health services use; look at coefficient on mental health services

Dangers of regression adjustment on full samples

- \triangleright When the treated and control groups have very different distributions of the confounders, can lead to bias if model misspecified
	- \triangleright Observe Y(0) in the control group, Y(1) in the treatment group
	- \triangleright Predicting $Y(0)$ for the treatment group may involve extrapolation and pure reliance on functional form
- \triangleright Regression is only "trustworthyif the treatment and comparison groups look similar on covariates (Rubin, 2001; Ho et al., 2007)

Visualizing Extrapolation

So can we never use regression adjustment?

- \triangleright No, not at all!
	- If differences between groups not large (e.g., $<$.1 or .2 standard deviations) regression works fine (Rubin, 2001)
	- \triangleright And in fact, matching methods (like propensity scores) work best in conjunction with regression

So what should we do instead?

Some methods attempt to remove both forms of confounding:

\blacktriangleright Regression discontinuity

- \triangleright Org has limited MH providers. Do they score people and only offer treatment to those who score above some threshold? If so, assume people around threshold are similar on both observed and unobserved
- \blacktriangleright Instrumental variables
	- \triangleright Amount of rainfall meaningfully predicts whether people receive mental health treatment (no weak instrument) and is uncorrelated with their likelihood of future incarceration (exclusion restriction)

When those don't work for a question, make assumption covered on the next slides 2 and use matching/weighting to make assumption more plausible. Cover two methods:

- 1. Propensity Scores
- 2. Alternative methods (CEM)

 2 Goes bv different names: selection on observables (SOO); no unobserved confounders; strong ignorability

So what should we do instead?

\blacktriangleright Matching/Weighting

- 1. Propensity Scores
- 2. Alternative methods (CEM)

Propensity Score Methods

- \triangleright Propensity score methods attempt to replicate two features of randomized experiments
	- \triangleright Create groups that look only randomly different from one another (at least on observed variables)
	- \triangleright Don't use outcome when setting up the design
- \blacktriangleright Idea is to find treated and control individuals with similar covariate values
	- \blacktriangleright Increase "balance"

Propensity scores

 \blacktriangleright Probability of receiving the treatment (T) , given the covariates (X)

$$
e_i = P(T_i = 1 | X_i)
$$

- \blacktriangleright Two key features:
	- 1. Balancing score: At each value of the propensity score, the distribution of observed covariates (that went into the propensity score) the same in the treated and control groups
	- 2. If treatment assignment independent of potential outcomes given covariates, then also independent of potential outcomes given the propensity score (no unmeasured confounders)
- \triangleright Facilitate matching because can match just on propensity score, rather than all of the covariates individually
- \triangleright Can estimate propensity scores using a simple logistic regression model

Feature 1: Propensity scores as balancing scores

- \triangleright At each value of the propensity score, the distribution of observed covariates (that went into the propensity score) the same in the treated and control groups
	- Intuitively, if two people had the same probability of receiving the treatment (e.g., mental health services) and one did and one didn't, it must have been random as to who did and who didn't
	- \triangleright Within small range of propensity score values, treated and comparison individuals should look only randomly different on the observed covariates
	- \triangleright Difference in outcomes within groups with same/similar propensity scores gives unbiased estimate of treatment effect

Feature 2: Unconfoundedness

- If unconfoundedness holds given the full set of observed covariates, also holds given the propensity score
	- $P(T|X, Y(0), Y(1)) = P(T|X)$ implies $P(T|X, Y(0), Y(1)) = P(T|e(X))$
- \triangleright This is what allows us to match just on propensity score; don't need to deal with all the covariates individually

Common support/overlap

- ▶ Additional requirement for causal inference: 'common support'
- \triangleright Everyone has a positive probability of receiving any of the conditions
	- \triangleright Known as 'positivity' in epidemiology
	- \triangleright Part of 'strong ignorability' in statistical literature
- \triangleright Fundamentally, if someone has 0 probability of receiving one of the treatments, we have no way of learning what their outcomes would be under that treatment, so can't learn about their causal effects
- In practice this examined by looking at the common support/overlap of the propensity score distribution: do the groups overlap (e.g., histograms)

Using propensity scores/types of "matching"

\blacktriangleright k to 1 nearest neighbor matching

- \triangleright For each treated unit, select k controls with closest propensity scores
- \triangleright Will discussion variations on this later
- \blacktriangleright Subclassification/stratification
	- \triangleright Group individuals into groups with similar propensity score values
	- \triangleright Often 5 subclasses used (Cochran 1968)
- \triangleright Weighting adjustments
	- Inverse probability of exposure weights (IPTW)
	- \triangleright Weighting by the odds

So what should we do instead?

\blacktriangleright Matching/Weighting

- 1. Propensity Scores
- 2. Alternative methods (CEM)

Returning to the rationale behind propensity scores: difficult to perform exact matching of treatment units with controls with continuous covariates $/$ as k increases

Propensity score approach: address inability to exact match by compressing k into a single scalar and then use that scalar to reweight data

Two classes of extensions

- 1. Use methods other than logistic regression to estimate $\pi(X) =$ $Pr(T = 1|X)$
	- \triangleright Why? Often optimize logit to find $\hat{\beta}_{MLE}$ (vector of weights on coefficients that maximize the likelihood function); in reality, we care less about weights on X that highly predict treatment and more about weights that optimize balance between treatment and control on X
	- \triangleright How: covariate-balancing propensity scores (CBPS; Imai and Ratkovic, 2014)
- 2. Return to original goal–exact matching of each treatment unit with a control unit–and perform that matching based on original covariate values (X) rather than a compression of those covariate values into $\pi(X)$
	- W hy? simulations show (King and Nielsen, 2016):
		- \triangleright When PSM is most likely to reduce imbalance: larger divergence between $\pi(T = 1)$ and $\pi(T = 0)$; PSM useful but common support condition most likely to be violated
		- When PSM increases imbalance: as $\pi(T = 1) = \pi(T = 0) \rightarrow 0.5$, PSM least useful due to random pruning but common support condition most likely to be met
	- \blacktriangleright How? CEM (Iacus, King, and Porro, 2011) 23/34

. . .

 $\sqrt{ }$

Coarsened exact matching (CEM): stick with original covariates rather than π ; get as close as possible to exact matching in two ways

 \setminus

Match treatment and control units exactly on nominal k

 \setminus

Coarsen continuous k and perform exact matching within strata

Visual illustration. Start with un-coarsened continuous values...

Coarsen based on meaningful categories and construct strata

Drop all units in strata where matching can't occur and match/reweight (note that if tx units are dropped, leads to new estimand)

Education

Matching: implementation

$\mathbf \Phi$

- \blacktriangleright MatchIt: can specify distance metric to calculate (e.g., distance between π : mahalanobis distance on raw covar values); method to match on (e.g., nearest neighbor); how many control units to match with each treatment (e.g., 1:1, 2:1)
- \triangleright CFM
- WeightIt
- $Coshalt$

- ^I causalinference: less familiar but seems to have propensity score
- \triangleright Or...estimate prop score using preferred method and write own matching function (written in R but could translate)

Matching and DSSG projects

- \triangleright Three general quantities of interest with our motivating example
	- 1. $\hat{\beta}$: estimate effect of mental health treatment $(T = 1)$ on jail (re-)booking
	- 2. \hat{y} : predict jail (re-)booking
	- 3. Some combination, e.g.: $\tilde{\tau} = \hat{Y}(T = 1) \hat{Y}(T = 0)$
- Goal of DSSG projects is often $#2$; most work on matching $+ML$ focuses on potential of latter for goal $#1$

How ML can help with matching if we care about $\hat{\beta}$

Estimating $\pi(X) = Pr(T = 1|X)$

 \triangleright Properties reviewed earlier depend on conditioning on the 'correct' set of confounders. E.g., X but not Z (Bhattacharya and Vogt, 2007; Pearl, 2010)

- \triangleright Some evidence that using ML methods like random forest makes the estimation of $\pi(X)$ more robust to accidental inclusion of Z
- \triangleright Inadvertant byproduct of introducing ML methods to predict a unit's treatment status is that the same mark of a 'good' ML model–units where observed $\vert\mathcal{T}_i=1$ have high $\hat{\pi}_i$; observed $\vert\mathcal{T}_i=0$ have low $\hat{\pi}_i$ –makes the 'common support'/overlap assumption $(0 < P(T_i = 1 | X_i) < 1)$ more difficult to defend
	- \triangleright As assumption, it's untestable; in practice, people look at overlap in empirical distributions of $\hat{\pi}_i$

How matching can help ML if we care about \hat{v}

- \triangleright Many of our training (and test) sets are neither a full census nor a random sample of units (people; building; workplaces)
- \triangleright Problematic if T or Y is correlated with a unit's probability of being in the sample (collider bias)

 \triangleright Think of S as the thing to match on and model that process

Conclusion

- \triangleright Other strategies for causal inference are aimed at addressing both observed features of a unit that influence its likelihood of treatment and unobserved features
- \blacktriangleright Matching makes a strong assumption–that once we condition on the correct set of observed features, the potential outcomes of a unit are independent from its treatment status. But it allows us to work with a broader range of observational data
- \triangleright Once we decide whether 'to match', there are many choices about how to match with non-trivial implications for parameter estimates