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Introduction Deployment environments

From model selection to deployment

Model deployment:

The process of designing a machine learning process to predict outcomes
autonomously with limited to no human interaction.

What does a typical “deployed” machine learning model look like?

Automation of time dependence

Time-dependent features are recomputed with more recent data
Models are periodically retrained with more recent data

Automation of model selection and evaluation

Feature contributions are re-optimized
Hyperparameters are re-optimized
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Introduction Deployment environments

Deployment fallacies

What are we implicitly assuming in this deployment setting?

Data assumptions:

Data collection methods and ETL processes produce stable streams of
data, and changes to these processes are directly observable
New data is always “more predictive or important” than old data
Model output does not produce feedback effects that alter feature or
label distributions

Optimization assumptions:

Model re-optimization is sufficient to ensure consistent estimation,
even under changes in conditional outcome distributions
The optimal set of hyperparameters is stationary in time
The optimization procedure is scalable

Problem: none of these are generically true in practice!
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Introduction Deployment environments

Why is this a bad thing?

Model effectiveness can be sorely limited under these assumptions!

Data cleaning methods may no longer be valid

Re-optimization may be prone to overfitting on newer data

Older data that’s systematically excluded from models may still be informative

Model may not support data from new populations (i.e. model does not generalize)

Partners who use model output for decision making can introduce new
confounding variables
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Introduction Deployment environments

Goal of deployment monitoring: change detection

Time-dependence of modeling processes is the root cause!

Time-dependence of ETL processes, feature distributions, model structure,
and model performance explicitly affect our modeling goals.

Primary goal is change detection, minimizing two kinds of errors:

Type I error : our estimated model changes in response to new data,
but the change does not reflect ground truth

Type II error : our model fails to change in response to new data that
reflects a change in ground truth
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Introduction Deployment environments

What makes this a hard problem?

No ground truth: difficult to distinguish between ”meaningful” and
”meaningless” model change

Model changes are not individually causal: there are often multiple
plausible explanations for why models change over time

Model changes are not independent: time-dependence can introduce
new interactions between nearly every component of our model
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Introduction Deployment environments

The model monitoring toolkit

Our approach:

Provide a toolkit for monitoring ML systems as a whole, from raw data
collection to predictions and scores

Deterministic methods: used to catch systems-level “errors”

Ex: broken ETL processes fails to load raw input data
Ex2: feature generation produces mathematically inconsistent values

Probabilistic methods: used to flag statistical “warnings”

Ex: feature distributions changes significantly after new data collection
Ex2: entity-level outcomes are inconsistent relative to one another
Ex3: model optimization “results” (ex: optimal hyperparameters,
residual structure) show evidence of overfitting, lack of robustness or
generalizability, bias, etc.
Ex4: feature contributions and dependence are inconsistent across
models with different hyperparameters
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Introduction Deployment environments
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Introduction Problem setup

Data setup: trajectories

All model inputs and outputs are time-dependent, indexed by t ∈ [T ]:

At each time, we observe N entities (any repeated observation):

Each entity generates K features Xn,k,t , k ∈ [K ], n ∈ [N]
Each entity generates one outcome / label: Yn,t , n ∈ [N]

No assumptions made about entity or feature independence

Modeling goal:

Use supervised learning to model Yn,t |Xn,t for all n ∈ [N], t ∈ [T ]

Additional assumptions:

Labels are directly observable (often not true in public policy scenarios)

Number of monitored entities does not change over time (counterexamples: survival
models in epidemiology, dropouts in panel studies)

Individual models have a fixed feature definitions
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Introduction Problem setup

Example: CMPD Early Intervention System (EIS)

(we will use examples from this project throughout the slides)

Modeling goal:

Given police officers’ dispatch history, arrest history, etc., predict officers
that are likely to have an adverse interaction with the public.

Adverse interactions can be defined as:

unjustified uses of force

officer injuries

preventable accidents

sustained complaints

Models are retrained with new data daily, with many features aggregated
in a rolling windows (ex: total arrests in last month)
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Determininstic system monitoring Pipeline testing

First priority: deterministic systems-level issues

Determinstic errors in ETL processes propagate through ML systems,
which means every possible process must be integration tested.
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Determininstic system monitoring Pipeline testing

Designing pipeline integration tests

Feature generating ETL processes can have explicit tests for consistency:

Number of inserted or updated database rows are reasonable

Features do not contain illegal values

Entity identifiers are properly joined to existing data

Feature calculations successfully incorporate new data
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Determininstic system monitoring Explicit feature dependence from latent variables

Known feature dependence

In many modeling contexts, features are distribution point estimates or
other aggregation estimates of an underlying latent random variable.

Example: CMPD feature blocks

Latent variable: count process
of theft arrests per officer

Features: over (1 day, 1 week,
1 month, 1 year, 5 years),
aggregate (count of all arrests,
average rate of arrests)
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Determininstic system monitoring Explicit feature dependence from latent variables

Examples of feature generating processes

Count processes: a process that
”counts” the number of times a
given ”event” occurs over time

Example: Poisson process

State-transition process: a
process where entities can be in a
single ”state” and transition to
different states as time progresses

Example: Markov chain
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Determininstic system monitoring Explicit feature dependence from latent variables

Pipeline testing with known feature dependence

If features have a known block structure, we have more deterministic
constraints on our incoming data.

Example: CMPD feature blocks

Total number of theft arrests
should be nondecreasing in time

If t1 < t2 and the average number
of theft arrests including t2 is
positive, then the average number
of theft arrests including t1 through
t2 is also positive
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Probabilistic tools Distriubiton estimates

Shared probabilistic tools

Probabilistic methods will share a number of common tools for
computational analysis of random variables:

1 Distribution quantization: estimating the distribution of a random variable from a
finite set of parameters

2 Distribution differences: calculating measures of distance between distributions

3 Change detection tools: estimating change breakpoints in time series

This is because we’ll be analyzing many different random variables:

Feature distributions at the entity level: Xn,k,t

Predicted outcomes / scores: E[Yn,t |Xn,t ]

True outcomes / labels: Yn,t

Model performance: L(Yt ,Xt)

Loss function contributions: εn,t
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Probabilistic tools Distriubiton estimates

Estimating probability distributions

Change detection depends on feature distribution estimates:

Fk,t(s) = P(Xk,t ≤ s) where X1,k,t . . .XN,k,t ∼ Xk,t

Empirical distributions can uniformly estimate any distribution:

F̂k,t(s) =
1

N

N∑
i=1

I{Xn,k,t ≤ s}

As N →∞, F̂k,t → Fk,t strongly and uniformly (Glivenko-Cantelli
theorem).

For distributions with known discrete support S, F̂k,t is neither
memory-intensive nor computationally expensive.
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Probabilistic tools Distriubiton estimates

Continuously-supported distribution methods

...but for continuously supported distributions, empirical distributions are
infeasible, both statistically and computationally.

Joint goals of optimization:

Vector quantization: represent a continuous distribution with a
discrete choice of parameters

Functional form: optimize the functional form to match the sample as
closely as possible

We will (briefly) review some common quantization methods in the next
few slides.
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Probabilistic tools Distriubiton estimates

Example 1: direct interpolation methods

Define breakpoints in s (histogram-style) or [0, 1] (quantile-style) and
interpolate between point estimates of distribution functions:

Choice of breakpoints can encode ”soft” prior information:
Often more robust than specifying explicit parametric models
Ex: heavy-tailed distributions, tracking extremal quantiles

Histograms are a naive (i.e. constant) kind of interpolation
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Probabilistic tools Distriubiton estimates

Example 2: generative distribution models

Kernel density estimation involves replacing point estimtaes with
combinations of smooth functions:

F̂k,t(s) =
1

N

N∑
i=1

1

Ch
K

(
‖s − Xi ,k,t‖

h

)

Allows user to define expectations for local behavior based on kernel
choice and bandwidth.

Still need a sparse representation of F̂k,t !

Parametric: mixture models, empirical
Bayesian methods

Nonparametric: clustering,
network-based autoencoders
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Probabilistic tools Distribution distances

CDF distances

Given two distributions, we need to calculate a functional distance:

There is no ”right” way to calculate functional distances!
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Probabilistic tools Distribution distances

Comparing two CDFs

One possible approach: think about functional differences in CDFs in
Lp-norm:

dp(Xk,t ,Xk,t+τ ) =

∫ ∞
−∞
|Fk,t(s)− Fk,t+τ (s)|p ds

Can also consider differences in the quantile function (inverse CDF), which
has unique properties using transport theory [1]:

Wp(Xk,t ,Xk,t+τ ) =

∫ 1

0
|F−1

k,t (s)− F−1
k,t+τ (s)|p ds (in 1D)

These are reminiscent of many classical distribution tests:

p = 1: Mallow’s distance (also known as ”Earth-mover’s distance”)

p = 2: energy distance (used in goodness-of-fit tests)

p =∞: total variation (used in Kolmogorov-Smirnov tests)
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Probabilistic tools Distribution distances

Why can’t we use KL divergence or other f -divergences?

Many standard distribution distances used in parametric analysis (such as
KL divergence) have the same functional form:

Df (Xk,t ||Xk,t+τ ) =

∫
Ω
f

(
dXk,t

dXk,t+τ

)
dXk,t+τ

Example: f (x) = x log(x) yields KL divergence.

Problems with this approach:

When the support of your two distributions differ, the distance may
be “infinite” or otherwise undefined

The distance is not a true metric, since it is not symmetric
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Probabilistic tools Distribution distances

Entity-level rank correlations

Repeated measurements at the entity level yield additional information!

Given X1,k,t . . .XN,k,t , define their entity ranks X(i),k,t ≡ Ri ,k,t , and then
for two matrices A,B define:

ρ(Xk,t ,Xk,t+τ ) =
n∑

i ,j=1

AijBij

[ n∑
i ,j=1

A2
ij

n∑
i ,j=1

B2
ij

]−1

Choices for Aij , Bij yield many classical nonparametric statistics [3]:

Spearman Rank Correlation: Aij = Rj,k,t − Ri,k,t

Kendall’s Tau: Aij = sgn(Rj,k,t − Ri,k,t)
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Probabilistic tools Distribution distances

Necessity of rank correlation and distribution changes

Distribution-level changes and entity-level changes need to be measured
simultaneously for proper detection:

Left: rank correlation change without distribution change

∣∣∣∣∣ Right: distribution change without rank correlation change
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Probabilistic tools Change detection

What constitutes distribution change?

Measures of association have ambiguous relationships with time-dependent
trends, making it hard to characterize!

Point estimates of association are noisy, and can have large
time-dependent variance

Associations typically decay as τ increases, but the presence, rate,
and form of decay are ambiguous

”Slow” changes in distributions over time are harder to detect than
”fast” point changes
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Probabilistic tools Change detection

Point changes: outlier detection

Many non-parametric methods exist for outlier detection that are more
robust than simple extremal statistics.

Example: local outlier factor (LOF) analysis

Use k-means distance to
aggregate outlier weight based on
nearest sample points.
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Probabilistic tools Change detection

Long term effects: trend filtering

Change point identification relies on modeling methods to ”denoise” time
series and identify different time-dependent regimes.

Example: `0 trend filtering
[7] Optimize:

arg min
y

[
1

2
‖y − x‖2

2 + λ ‖Dx‖1

]

where:

D =

−1 1
. . .

. . .
. . .

−1 1
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Probabilistic tools Change detection

Time-dependence of association decay

Any normalized association metric that maps to [0, 1] can be converted
into an integrated autocorrelation time (IAT):

τρ =
∞∑

t=−∞
ρ(Xt ,Xt+τ ) ≈ 1 + 2

T∑
t=1

ρ(Xt ,Xt+τ ) for sufficiently large T

IAT can be useful as a proxy for the aggregate time at which past samples
have an impact on future samples (under the chosen correlation metric)

NB: IAT is computable for stationary sampling processes, but may be effectively infinite for

small T or highly non-stationary sampling proceses
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Probabilistic tools Change detection

Distribution change example

Example: CMPD officer scores

Point changes are easy to detect with a large number of entities and
frequent sampling

Rank autocorrelation decays as τ increases, but decay is slow so IAT may
not be finite
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Interpreting distribution changes Robustness and generalizability

How should distribution changes relate to each other?

In general, we want to verify that our model has desirable statistical
properties in the deployment setting:

Consistency: model results are reproducible and will ensure high
probability convergence to ground truth

Generalizability: models remain accurate as new entity and feature
samples are added

Model structure stability: features that contribute meaningfully to
model output do not change rapidly over time

Residual stability: residuals are relatively uniform, and residual
structure does not indicate different performance for different groups
(especially protected socioeconomic classes)
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Interpreting distribution changes Robustness and generalizability

Algorithmic robustness

Informal definition

A model is robust if and only if whenever a training sample is close to a
testing sample, the training error is close to the testing error.

Formal: a model M with training set S ⊂ Z ≡ X × Y is (J, ε(S))-robust
if Z can be partitioned into J disjoint sets {Ci}Ji=1 such that for all s ∈ S :

z , s ∈ Ci =⇒ |LM(s)− LM(z)| ≤ ε(S)

[4, 8]
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Interpreting distribution changes Robustness and generalizability

Generalizability is equivalent to robustness!

Informal definition

A model is generalizable or scalable if and only if the performance of the
model is not impacted by increasing training and testing sample sizes.

Formal: a model M generalizes w.r.t. S if, given a sequence of increasing
size training sets sn ⊃ S and testing sets tn we have:

lim sup
n

{
Et [LM(tn)]− LM(sn)

}
≤ 0

Theorem: asymptotic behaviors of robustness and generalizability are
equivalent [4, 8]
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Interpreting distribution changes Robustness and generalizability

Violations of robustness

Robustness is hard to directly measure, but the opposite is somewhat
easier: there’s plenty of active research on how to generate
shortest-distance adversarial examples [2, 6]

Examples like these demonstrate that many algorithms in practice fail to
generalize, and thus fail on larger datasets!
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Interpreting distribution changes Robustness and generalizability

Feature contributions

How do we estimate the effect of a given feature under the model? Again,
many different options!

Many options look at empirical plots of different distributions:

Partial dependence plots

Individual conditional expectations

However, since these are functional forms, they require the same numerical
tools for distribution differences.
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Interpreting distribution changes Robustness and generalizability

Feature importances

Relative feature importance is often determined by permutation test [5]:
1 For each feature k ∈ [K ]:

1 Randomly permute Xn,k,t in k for all n ∈ [N]
2 Retrain and observe the change in a target function (examples: loss

function, conditional information, etc.) ∆k,t

2 Re-normalize ∆k,t to get feature importances Ik,t s.t.
K∑

k=1

Ik,t = 1

Explicit methods may replace full permutation tests if model form is
known and mathematically interpretable.

Useful when permutation tests are computationally expensive

Ex: Random forests, mean decrease in Gini impurity
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Interpreting distribution changes Robustness and generalizability

Should feature importances be stable?

Highly ambiguous!

Because of how feature importances are calculated, they are often
weak estimators of structural dependence

More consistent estimators are often computationally prohibitive

Practical workaround: aggregating feature importances by blocks

Sum feature importances that correspond to the same feature block

Aggregated importances reflect model dependence on latent variables
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Interpreting distribution changes Robustness and generalizability

Example: CMPD block feature importances

For a large number of features, individual feature importances are noisy,
but block feature importances are more stable.
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Interpreting distribution changes Model group parameters

Multiple models

New setup: consider a set of models m ∈ [M], each with hyperparameters
hq,m for q ∈ [Q]; assume that at each susccessive retraining, the model
which minimizes the loss function m∗t has hyperparameters h∗q,t

Unintended side effects:

Residual structure can vary between models

Robustness between train-test sets is ambiguous; decreasing test loss
does not guarantee improved robustness

As Q increases:

Optimal models become more prone to overfitting
Sets of hyperparameters hq,t may be statistically indistinguishable
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Interpreting distribution changes Residuals and loss

Residual structure and bias

Let εn,m,t be the contribution to a loss function for a given
entity-model-time combination:

Different entity subsets Na, Nb may have different residual structures,
ex: E[εn,m,t |n ∈ Na] 6= E[εn,m,t |n ∈ Nb]

More complex models are more likely to have non-uniform residual
structures, which have unknown effects on Na vs. Nb

Example: Na and Nb are different socioeconomic bias categories
(race, gender, income, etc.)

Remember:

Unless otherwise specified, most loss functions are uniform in entity and do
not control for generalized residual structures.
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Interpreting distribution changes Residuals and loss

Proxying overfitting using train-test error

m∗t compared with mt may have structural differences in train-test errors.

Toy example:

Type Em∗
t
[εn,m,t ] Varm∗

t
(εn,m,t) . . . Emt [εn,m,t ] Varmt (εn,m,t)

train .05 .06 . . . .18 .02

test .10 .08 . . . .20 .03

A sub-optimal model in point estimates of loss may be more easily scalable
if the training and testing residuals are more similarly distributed!
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Interpreting distribution changes Residuals and loss

Open statistical questions

Many interactions are difficult to characterize, and are open questions in
statistics research:

Interactions of temporal feature importance measures with
distribution changes

Generalized ensemble methods for enforcing uniform loss contributions

Loss function optimization with non-deterministic effects
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Summary

How do we apply this information?

Always frame model monitoring goals in terms of large-scale project goals.

Example considerations:

How will project partners use model output?

Explicit monitoring for subsets of at-risk populations
Application of interventions under limited resources

How will project partners alter model input?

Incorporation similarly-structured data from new structures
Comparison of models for different labels of same latent phenomenon
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Summary

Generic modeling guidelines

Worried about this? Use this Look for this
ETL process not producing fea-
ture output deterministically

Pipeline integration tests Unexpected behavior from failing in-
tegration tests

ETL process not producing clean
or meaningful data

Entity-level feature distributions Discontinuities in rank correlations
and distances

Feature distributions are drifting
over time

Entity-level feature distributions Time dependence of distribution dis-
tances

Predictions are inconsistent Entity-level score distribution Rank correlation between entity scores
Loss function is non-uniform in
entities

Sub-population measures of residual
independence

Bias in residual distributions

Model is not scalable Extremal contributions to the loss
function

Frequency and severity of adversarial
examples

Hyperparameter optimization is
causing overfitting

train and test loss contribution distri-
butions for different hyperparameters

Time dependence of error distribu-
tions, and train-test differences
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Summary

Additional topics we would cover if we had time

Vector quantization of distributions: finding low-dimensional
representations of distributions

Latent variable feature representations: count processes,
state-transition processes, network-based processes

Modeling inter-block dependence: empirical copulas, numerical
estimates of optimal transport

Algorithmic pseudo-robustness under non-ergodic settings

Feature importance alternatives and their stability

Optimization techniques for avoiding adversarial examples
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Summary
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